The ~ ~ & ion and Comparison of Programming Languages for High Energy
نویسنده
چکیده
A_ In this paper I discuss the issues surrounding the comparison and selection of a programming language to be used in high energy physics software applications. The evaluation method used was specifically devised to address the issues of particular importance to HEP applications, not just the technical features of the languages considered. The method assumes a knowledge of the requirements of current HEP applications, the data-processing environments expected to support these applications and relevant non-technical issues. The candidate languages evaluated were Ada, C, FORTRAN 77, FORTRAN 8x, Pascal and PL/I. Particular emphasis was placed upon the past, present and anticipated future role of FORTRAN in HEP software applications. Upon examination of the technical and practical issues, I have drawn some conclusions and made some recommendations regarding the role of FORTRAN and other programming languages in the current and future development of HEP software.
منابع مشابه
In situ ion substitution of sodium gluconate: Comparison of bipolar membrane electrodialysis and electro-membrane reactor for producing gluconic acid
Based on the home-made cation-exchange membrane (CEM) and bipolar membrane (BPM), electrodialysis with bipolar membrane (EDBPM) and electro-membrane reactor with three compartments (EMR-3) were developed to achieve in situ ion substitution and recovery of gluconic acid (GLH) from its sodium salt. Physicochemical and electrochemical properties of CEM and BPM were studied to assess their...
متن کاملEnergy cost minimization in an electric vehicle solar charging station via dynamic programming
Environmental crisis and shortage of fossil fuels make Electric Vehicles (EVs) alternatives for conventional vehicles. With growing numbers of EVs, the coordinated charging is necessary to prevent problems such as large peaks and power losses for grid and to minimize charging costs of EVs for EV owners. Therefore, this paper proposes an optimal charging schedule based on Dynamic Programming (DP...
متن کاملSupported Liquid Membrane in Metal Ion Separation: An Overview
Using liquid membrane and, in particular, supported liquid membrane (SLM) is a novel method of separation in comparison to other methods such as adsorption, extraction and ion exchange. SLM is a combination of simultaneous extraction and disposal whose high efciency and capability is proven by many studies. So far, many researchers have utilized SLM in various scientifc...
متن کاملSnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries
Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...
متن کاملThe Comparison of the shares of stopping power in a soft tissue-equivalent material
Introduction: Proton therapy is a type of radiation treatment that it uses protons to treat cancer. Because of the protons’ unique ability to distribute the radiation dose more directly to the tumor, it minimizes the damage to nearby healthy tissues. The rate of energy loss by the ion in the target is called stopping power. The total stopping power is sum nuclear and electroni...
متن کامل